Hammerstein Model Identification Using Radial Basis Functions Neural Networks
نویسندگان
چکیده
A new method for the identification of the nonlinear Hammerstein Model consisting a static nonlinearity in cascade with a linear dynamic part, is introduced. The static nonlinearity is modeled by radial basis function neural networks (RBFNN) and the linear part is modeled by an autoregressive moving average (ARMA) model. A recursive algorithm is developed to update the weights of the RBFNN and the parameters of the ARMA model.
منابع مشابه
Nonlinear System Identification Using Hammerstein-Wiener Neural Network and subspace algorithms
Neural networks are applicable in identification systems from input-output data. In this report, we analyze theHammerstein-Wiener models and identify them. TheHammerstein-Wiener systems are the simplest type of block orientednonlinear systems where the linear dynamic block issandwiched in between two static nonlinear blocks, whichappear in many engineering applications; the aim of nonlinearsyst...
متن کاملDesign of Grounding Vertical Rods Buried in Complex Soils using Radial Basis Functions
In this paper, using neural networks based on radial basis functions (RBF), a comprehensive closed-form solution for effective length of vertical grounding rod is extracted in such a way that the two effects of ionization and dispersion are simultaneously considered. In creating the model, training data are computed from multi-conductor transmission line (MTL). As a results, firstly in the prop...
متن کاملNovel Radial Basis Function Neural Networks based on Probabilistic Evolutionary and Gaussian Mixture Model for Satellites Optimum Selection
In this study, two novel learning algorithms have been applied on Radial Basis Function Neural Network (RBFNN) to approximate the functions with high non-linear order. The Probabilistic Evolutionary (PE) and Gaussian Mixture Model (GMM) techniques are proposed to significantly minimize the error functions. The main idea is concerning the various strategies to optimize the procedure of Gradient ...
متن کاملNumerical treatment for nonlinear steady flow of a third grade fluid in a porous half space by neural networks optimized
In this paper, steady flow of a third-grade fluid in a porous half space has been considered. This problem is a nonlinear two-point boundary value problem (BVP) on semi-infinite interval. The solution for this problem is given by a numerical method based on the feed-forward artificial neural network model using radial basis activation functions trained with an interior point method. ...
متن کاملESTIMATION OF INVERSE DYNAMIC BEHAVIOR OF MR DAMPERS USING ARTIFICIAL AND FUZZY-BASED NEURAL NETWORKS
In this paper the performance of Artificial Neural Networks (ANNs) and Adaptive Neuro- Fuzzy Inference Systems (ANFIS) in simulating the inverse dynamic behavior of Magneto- Rheological (MR) dampers is investigated. MR dampers are one of the most applicable methods in semi active control of seismic response of structures. Various mathematical models are introduced to simulate the dynamic behavi...
متن کامل